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Abstract—The objective of the present study is to employ the numerical grid generation technique for the

solution of hydrodynamics and heat transfer in a three-droplet array. Elliptic partial differential equations

are used to generate grids in the physical plane. The Navier-Stokes equations in vorticity-stream-function

form and the energy equation have been solved numerically by the finite difference method for the Reynolds

number range of 10-200. Numerical solutions in terms of drag coefficient and Nusselt number have been

obtained. The results are compared with the results obtained in an earlier study as well as those in the
literature.

1. INTRODUCTION

THE THEORY of fuel droplet vaporization and spray
combustion has been under development for several
decades. During recent years it has received a large
amount of attention. Most studies on the combustion
of liquid fuel sprays consider the vaporization of
either single isolated droplets or overall droplet
sprays, and relatively few works have been carried out
on interactions between droplets.

In dense spray situations, many droplets are
present, and the average distance between droplets
can be as low as a few droplet diameters. It is expected
that the geometry and scale of the diffusion field sur-
rounding each individual droplet will be affected by
the droplet interaction. The Nusselt number and the
functional form of the relationship between vapor-
ization rates and local ambient conditions will be
influenced by the droplet spacing.

Some investigators have examined a few droplets
in a well-defined geometry or a large number of drop-
lets in a periodic configuration. These arrangements
are sometimes referred to as droplet arrays. These
arrays, although artificial, can be very useful in
obtaining information on the effect of droplet spacing
on transport rates. Some work on hydrodynamics and
heat transfer to an array of spheres with forced con-
vection has been performed by Tal er al. [1, 2]. In
these studies, an infinite array of spheres of radius ‘a’
with uniform spacing ‘25’ (Fig. 1) is considered. Due
to symmetry and the nearly periodic character associ-
ated with an infinite array, no heat transfer or momen-
tum transfer takes place at the streamwise equidistant
plane between the spheres. By this assumption, the
problem is reduced to a multitude of spheres in tan-

dem in a square streamtube (Fig. 2) which is sub-
sequently replaced with a cylindrical duct of equal
cross-sectional area. A three-sphere array is sub-
sequently used.

The Navier—Stokes equations in vorticity—stream-
function form and the energy equation are solved
numerically by using a finite difference method with
non-uniform cylindrical mesh. The diffusion terms are
expressed using a central difference scheme and the
convection terms (in both the vorticity and the energy
equation} using an upwind difference scheme.

Recently, the present authors [3] extended Tal er
al.’s formulation to the vaporizing droplet case. Nus-
selt number correlations for both the vaporizing and
the non-vaporizing droplet cases have been obtained.
In order to reduce the amount of false diffusion caused
by an upwind difference scheme, a hybrid scheme is
used instead. It is realized that there is one drawback
to the non-uniform cylindrical mesh geometry. It does
not have a uniformly fine grid around the droplet
surface region. Therefore, the accuracy of the solution
will be affected by the relatively coarser grids in spite
of the finer spacings in some other regions.

In order to eliminate the disadvantage of the non-
uniform cylindrical mesh and to improve the numeri-
cal accuracy, a numerical grid generation technique is
used in the present study. Numerical grid generation
has been widely used for a numerical solution of
partial differential equations in arbitrarily shaped
regions. Numerous advantages accrue when this tech-
nique is employed. For example, the body surface can
be selected as a boundary in the computational plane
so that the complication of boundary shape is effec-
tively removed from the problem. It is also possible
to distribute the transformed coordinate lines in the
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NOMENCLATURE
a radius of droplet X value of x at outlet
2b distance between the centers of two ¥ dimensionless radial coordinate, r/a.
neighboring droplets
cy total drag coefficient Greek symbols
Cyy friction drag coefficient o thermal diffusivity
Cyp pressure drag coefficient 0 angle from frontal stagnation point
C, specific heat at constant pressure I dynamic viscosity
d diameter of droplet, 2a v kinematic viscosity
k heat transfer coefficient En transformed coordinates
£ Jacobian of transformation P density
k thermal conductivity ] dimensionless stream function, ¥/ Via’
Nu Nusselt number, Ad/k v stream function
Pr Prandtl number, C u/k w dimensionless vorticity, o’a/ ¥,
r, ¢,z cylindrical coordinates @ vorticity.
Re Reynolds number, Vid/v
T dimensionless temperature, Subscripts
(T'—=THIT~T%) i inlet
T temperature n normal to the droplet surface
T; inlet temperature s droplet surface
T droplet surface temperature 0 frontal stagnation point.
u dimensionless velocity in z-direction
v dimensionless velocity in r-direction Superscripts
V. inlet velocity dimensional quantity
x dimensionless axial coordinate, z/a - averaged guantity.

physical plane with concentration of lines on regions
of high gradients while maintaining the square grid in
the computational plane.

Some work on using numerical grid generation for
a single droplet study has been carried out by Patnaik
[4]. In the present study, elliptic partial differential
equations are used to generate grids for the three-
droplet array configuration. Numerical solutions of
partial differential equations are done on the trans-
formed coordinate system by transforming all partial
derivatives analytically so that the transformed coor-
dinates, rather than the physical coordinates, become
the independent variables. The result is a set of partial
differential equations and boundary conditions in
which all derivatives are with respect to the trans-
formed coordinates. These equations are then ex-
pressed as finite difference equations on the square
grid that is inherent in the transformed plane. The
governing equations, expressed as difference equa-
tions in the computational plane, are solved by a
successive line underrelaxation method.

Although the present study focuses on the non-
vaporizing droplet array case, the formulation can be
extended to the vaporizing droplet situation. Nusselt
numbers and drag coefficients have been obtained for
intermediate Reynolds numbers (Re = 10-200). The
results are compared with the results of the previous
work [3] as well as those in ref. [1].

The details of the grid generation are explained in
Section 2. In Section 3, the mathematical formulations

which have been derived in ref. [3] are presented for
completeness, The finite difference forms of the
governing equations are derived in Section 4 followed
by results and discussion.

2. THE GRIDS

The problem of grid generation is that of deter-
mining the mapping which takes the grid points from
the physical domain to the computational domain.
Various schemes are available to achieve such map-
pings, including conformal mappings, algebraic
schemes and elliptic partial differential equations.
Thompson ef al. [5] have worked extensively on using
elliptic partial differential equations to generate grids.
This mapping is constructed by specifying the desired
grid points (x, ») on the boundary of the physical
domain. The distribution of points on the interior is
then determined by solving

Etd,, = PUEM
e+ = Q) (I

where (£,n) represent the coordinates in the com-
putational domain and P and @ are terms which
control the point spacing on the interior of the physi-
cal domain. The effect of changing the functions P
and Q@ on the coordinate system is discussed by
Thompson et al. [6]. One particularly effective pro-
cedure is to choose P and Q as exponential terms so
that the coordinates are generated as the solutions of
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F1G. 1. Assemblage geometry : (a) side view; (b) front view
(after ref. [1]).

futby= = Y asgn(E=E)ewp(~ali—&)

— 3 bysgn(E—&)exp (—d((E—&)?
j=1

+—n)H"?)

= P(¢.n) (2a)
M Fhlyy = — _Z a;sgn (n—n;) exp (—c;ln—ni)
— 2. bjsgn (1—m)exp (= (¢ —¢)’
+0—n)")'")
= Q¢ n. (2b)

The first terms have the effect of attracting the
¢ = constant lines to the £ = ¢, lines in equation (2a),
and attracting # = constant lines to the # = #; lines in
equation (2b). The second terms cause ¢ = constant
lines to be attracted to the points (£, #,) in equation

HMT 31:5-K
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Fi1G. 2. Multisphere cylindrical cell: (a) side view; (b) front
view (after ref. [1]).

(2a), with a similar effect on # = constant lines in
equation (2b).

Elliptic partial differential equations are used to
generate grids in the present study. All derivatives are
approximated by second order central differences. The
set of non-linear difference equations is solved by
successive line overrelaxation.

The magnitude of the range of the transformed
coordinates, £ and #, is irrelevant to the subsequent
use of the coordinate system in the numerical solution
of partial differential equations, for the mesh widths
in the transformed plane, A¢ and A#, simply cancel
out from all difference expressions for transformed
derivatives. Therefore, A¢ and Ay are both taken as
unity for convenience, with & and 5 each ranging from
unity to the total number of coordinate lines of each
description.

Figure 3 shows the surface-oriented coordinates
obtained as a solution of the transformation for a
three-droplet array. A non-uniform distribution of
points has been obtained in the physical domain, while
the computational domain is maintained with a
uniform rectangular grid.

It should be mentioned that the slab corners in the
transformed field are special points which require
special treatment. This type of special point occurs
when a convex corner in the transformed field is
associated with a point on a smooth contour in the
physical field. Both coordinate lines experience slope
discontinuities at this point (Fig. 4). In the present
study, a linear distribution of partial derivatives in the
neighborhood of a special point has been assumed.
Other techniques for treating the special point can be
found in ref [6].

3. MATHEMATICAL FORMULATION
The governing equations for the axisymmetric flow
field and heat transfer in cylindrical coordinates have
been derived in the previous paper [3] and are sum-
marized here for completeness

_1| Y 1oy
w_y[5x2+6y2 yay] @)
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where the stream function, ¥, is defined as
160
U=-_
y oy
__ 1o
o= — ax

The boundary conditions are:

@

)

(6

M

(iv) at the cylinder wall, y = (b/a) (4/m)""*

w=0
oT
oy~
(v) at the droplet surface
¥=0
du v

T=0.

®)

©

(10)

(1

(12)

In boundary condition (v}, the vorticity at the drop-
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let surface is calculated following its definition. The
velocity components are obtained from differentiating
the stream function following equations (6) and (7).

As mentioned in ref. [3], the above formulation is
valid for the non-vaporizing droplet case. It was found
by Prakash [7] that the surface velocity is typically
small and does not affect the heat and mass transfers
or the vaporization rate in the gas phase. Because of
that the surface velocity can be neglected in the gas-
phase analysis. This greatly simplifies the problem by
eliminating the matching of the surface velocity along
the droplet surface. The model also assumed that the
temperature at the droplet surface remains constant
and uniform.

The local heat transfer to the droplet can be ex-
pressed in terms of the local Nusselt number which
is given by

oT

Nuy =2—. 1
wy =2 (13)

Subsequently, the overall average heat transfer to
the whole droplet can be expressed as

(14)

0

1 (=
Nu=2f Nu,sin 6d6.

As for the drag coefficients, the derivations for fric-
tion drag and pressure drag can be found in Jenson
[8]. They are given by

I
C‘"_EL wsin® §d60 (15)
Cap =f P,sin26d0 (16)
0
where
o= Pot (% 40) o 17
80T Re )y \on to ) an

The governing equations as well as the boundary
conditions are expressed in finite difference form in

6 2 5
3 0 1
7 4 8

F1G. 5. Grid numbering system.
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conjunction with the numerical elliptic grid generation
technique. The details are given in the next section.

4. FINITE DIFFERENCE FORMULATION

In order that the computations can be performed
on a rectangular grid in the computational plane, it is
convenient to transform the governing equations from
the physical domain (x, y) to the computational
domain (&, ). Using the chain rule of partial differ-
entiation the partial derivatives become

0,0, 0

ox - o T oy

] _¢ 0 0

TR

02 0 0 , 07 , 07

W=fu%+’7m%+§xa—iz+m672
62

+2¢vnx@

92 0 0 o? 32

Wzéyya_f‘knyy%*'éjaiiz*‘ﬂfw
62

The matrices (éxa iyy Hxs Nys éxx’ gyys Hxxs r’yy) appear-
ing in these equations are obtained from the following

expressions :

_h
éx - J
—X
g =0
¥
", = Té
X¢
= 7
xr] (yécé.\% + zyfr,éxnx +ym;’1§')
Wy (xééég +2x5néxnx +xqqn5)
éxx - J
xﬂ(yfﬁéyz +2y-f'léy7’y +yrm'13)
_y'l(xfféf +2x§néy'7y +xrm’7,§)
iyy J
y{(xéféf’ +2x§r]éxr’x+xvmr,§)
_ _xf(y§§é§+2y§q€xnx +yqq’1§)
nxx - J
Velxee&o +2x5,80, + X,15)
Ny = —x: ey +§y§v€yrly + Yually) (19)

Referring to the notation of the rectangular ¢
grid of Fig. §, the following central difference approxi-
mations are used :
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Ele” 2
oF| _ F,—F,
a’] 0 N 2
O°F|  Fy—Fo+Fy~F
aonlo 4
F
aer), = hrrhh
aF
al, = F, +F,—2F,. (20)

Here Fis a generalized function representing T, ¥, w,
x or y. Substituting equations (18)—(20) into equation
(3), followed by some rearrangement, leads to the
following equation :

Cothg = Cﬂ/ﬁ +C2W2+C3¢3+C4‘l’4

+Cs(Ws—Ye+¥s—¥s)—@o (2D
where
2 4 2 2 2
CO = ;(5): +§v +nx +ny)
¢ =L Caté ,_15 +1(52+52)
l_‘zy XX vy y ¥ y x ¥
1 1N 1,
C2=2~‘; nxx+’]vv”;ﬂ} +;(nx+ny)
C—_ii +(: i; +_l_§2 52)
3 2y xx yy'—ys_v y( e 3 4
Cy= 1( - )+1( T+1y)
4 — 2y ”xx ny_v yrly y nx ¥
1
CS = 5} (éx’?x + éyr;y)' (22)

Similarly, equation (4) becomes
Dywy = Dw,+ Dyw,+ D0+ Do,
+Ds(ws—wg+w,—wg) (23)

where

Rev 1
ST T3

Do = 2+ & +nin) = 5o

1 1
D, = E(gxx +&,+ ;Q)-&- &+
1/ Re Re
— 5 (*—2 ﬁxu+ ) éyv>

1 1
D, = i(mﬁmﬁ ;ny>+(nf +nh)

L(Re . Re
2\ HT Y
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1 I )
D3 = - E(éxx+€yy+ yéy)+(€t+é)%)

1/Re Re
+ 3 (fouﬁ' —i-é},v)

1 1
D=~ 3 (nn +11,,+ ;ny) +(i+nd)

LR, . Re
F\ g Ut e

1
DS = 5 (éxrlx + éyny) (24)

and equation (5) becomes

ETy=E T\ +E, T, +ET,+E,T,
+Es(Ts—Ts+T,—Ts) (25)

where

Ey =283+ +ni+n)

1 1
El = -(fxx+éy}!+;5y>+(éi+£§)

2
1 ReP)"5 RePré
AU
1 1 I
E2=§ 71xx+’1yy+;'1y +(’7x+ny)
\(RePr . RePr
AN

1 1
Ey=—3 (é_w &t — Q) +(EE+ED
¥

1 RePré Re Pr
+2 3 pUES 3 &

i 1
E4 = - -(”xx+’1yy+;’7y>+(n§+nj2')

2
} (Re Pr

+ ge‘Pr
AT TR Y

1
ES = E(éxnx'*'éyr’y)’ (26)

In the present study, a hybrid scheme is used. Under
the hybrid scheme, central difference is utilized when

|[Rese] €2 and |Res,] <2 forequation (23)
and

[Pessl €2 and |Pe,,| <2 forequation (25)

where
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Re,; =

(E+8)

<cxx+¢yy+ :) (&cw%yv)

Re Re
11 +’7yy+ r’y 2 nxu+ _2"7yU

(2 +n2)
Re Pr Re Pr
5o ) e 5 e0)

(srs,
& +&)
Re Pr Re Pr
xx+’7yy+ r’y 2 ”xu+ T”yv
(27

(3 +n7)
Outside these ranges, the upwind difference is used
with the diffusion terms (w, @,,, T, T,,) set equal
to zero. The coefficients in equations (23) and (25)
become

Re,, =

Pe,, =

Pe,, =

Rev 1
D, f(A +A2)+ ﬂy(Bl+Bz) ——t+=
2y 'y
Re Re
D 5xx+€yy+ é éxAZ_ '6},1)
2 4
1 1 Re Re
D2 = 5 (nxx+nyy+ ;r,y)_*_ 7’7.\:B2— T’?xv

1 Re Re

D3= (éxx+éyy+yé> 2 éxAl+T€yv
1 1 Re Re

D4= _5 rlxx+'1yy+;’1y +7’1yBl+'4"1xu

1
DS = 5 (éxr,x + 6yrly) (28)
and
ReP Re Pr
E, = (A4 +A4)+ —— ) ny(B|+Bz)
1 1 Re Pr Re Pr
E = §<61x+€yy+ ;fy)+ TéxAz— Tfyv
1 1 Re Pr Re Pr
EZ = i("xx+’1yy+ y"y>+ —2—7’sz_ Tr’xu
1 1 RePr RePr
E3= —2<é\'x+éyy+yé>+ 4 éyU
1 1 Re Pr RePr
E“ == i "xx+rlyy+ ;"y + 2 ”y 4 leu
1
ES = E(éx"x*‘éyrly) (29)

where
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Ay = [l 0]
=[l—u0]
B, = I, 0}]
B, =[|—v,0]]. (30)

Equations (21), (23) and (25) form a set of non-
linear algebraic equations which can be solved by an
iteration scheme. A line by line successive under-
relaxation method is used.

5. RESULTS AND DISCUSSION

Numerical solutions have been obtained for a three-
droplet array. The results obtained from an earlier
study [3] and those from Tal er al. [1] have been
used for comparison and are shown in Figs. 6-8. It is

PRESENT STUDY
TONG AND CHEN [3]
TAL, LEE AND SIRIGNANO [1]

+ b0

i2

LOCAL NUSSELT NUMBER

o 45 390 135 180
ANGLE FROM FRONT STAGNATION POINT
(DEGREE)

FIG. 6. Local Nusselt number comparison for the first droplet
of a three-droplet array: b/a = 1.5, Re = 100, Pr = 1.
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FiG. 7. Local Nusselt number comparison for the second
droplet of a three-droplet array: bja = 1.5, Re = 100,
Pr=1.
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interesting to note that in the results of Tal er al. [1]
the maximum heat transfer for the first droplet is not
located at the stagnation point, No discussion about
the dip in local Nusselt number at the stagnation point
is given in Tal ef af. {1]. On the other hand, the local
Nusselt number for the first droplet obtained by the
present authors decreases monotonically from the
stagnation peint region to the shoulder region and
then becomes negligibly small in the separation
region. This is also observed in single droplet analyses
by Renksizbuiut and Yuen {5} and by Sayegh and
Gauvin [10]. Although discrepancy of Nusselt number
behavior at the frontal stagnation point exists, the
contribution of the stagnation point to the overall
heat transfer is negligible because of the relatively
limited extent of area involved. For the second and
third droplet, the front region of the droplet contains
wakes due to the flow separation from the rear region
of the droplet upstream. The heat transfer rate in the
front region of the droplet is severely decreased.

It should be mentioned that the Nusselt numbers
for all three droplets obtained by the present authors,
both in the present study and in the previous work
[3], are higher than those obtained by Tal et al. [1].
In ref. [3], the results for the non-vaporizing single
droplet case show that the hybrid scheme yields better

agreement with the results from refl 19}, and the
upwind difference scheme used in ref. 1] yields lower
values.

As typical for any iteration scheme, the number of
iterations for convergence depends on the initial guess.
In the present study, the result for the Re = 10 case
is used as the initial guess for the Re = 20 case. The
iteration  process is marching forward with a Reynolds

mha Srno nf 1N rsﬂ'fn' ez
number increment of 10 after each convergence,

The mesh used in the present study (Fig. 3) consists
of a 91 x21 grid with three large emply squares
embedded corresponding to the three droplets. The
following relaxation factors are used in the cal-

S. 1. Cuen and A, Y. Tong
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Fi1G, 9. Overall droplet Nusselt number for a non-vaporizing
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Fii. 10. Total drag coefficient for a non-vaporizing three-
droplet array: bla = 1.5, Pr= 1.

culations: 0.35 for w; 0.9 for both y and T. It con-
sumes about 7.5 min of CPU time on an IBM-4341
system to reach the solution for Re = 100 by the
marehing scheme mentioned above with less than
G.1% COnVErgendce SIror. The csr;“espﬁﬁumg CpU
time consumed in the previous study {3} is about 20
min. The amount of CPU time for the grid generation
is about 1.5 min.

The results for the overall Nusselt number and total
drag coefficient as a function of Reynolds number are
shown in Figs. 9 and 10, respectively. The values of
the drag coefficient as well as Nusselt number for the

firct r‘f{\r\)at are Aicf!ﬂr’f‘lﬂ‘k]\! h‘mﬂxar‘ than the values
arst isingc g

for the two downstream droplets. This resuit is in
compliance with the study of Tal et al. [1]. The figures
show that the resuits for the second dropiet resembie
the results for the third droplet. This suggests that
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periodic behavior can be expected after the first drop-
let.

Attempts have been made to search for exper-
imental results which can be used for comparison
with the numerical resuits. Unfortunately, due to the
geometry constraints used in the present work, no
experimental results have been found in the existing
literature which are useful for comparison.

6. SUMMARY

The use of a grid generation technique for the
numerical solution of heat transfer and hydro-
dynamics in a three-droplet array has been developed.
The Navier-Stokes equation in vorticity-stream-
function form and the energy equation have been
solved. Numerical solutions have been obtained for
the Reynolds number range of 10-200. The results are
compared with the results obtained in an earlier study
as well as those in the literature. The body-fitted coor-
dinates presented in this study require less computer
time than the earlier study [3] and are more suitable
for treating the more general problem of droplet heat-
ing and vaporization. Due to the geometry concerned
in the present study, no experimental result can be
found in the existing literature for comparison.
Acknowledgement — The authors wish to acknowledge sup-

port of this research by the National Science Foundation
under research grant MEA-8404292.

REFERENCES

I. R. Tal, D. N. Lee and W. A. Sirignano, Hydro-
dynamics and heat transfer in sphere assemblages—cyl-

1071

indrical cell models, Int. J. Heat Mass Transfer 26, 1265
1273 (1983). Also see ASME Preprint 81-WA/HT-44
(1981) and AIAA Preprint 82-0302 (1982).

. R. Tal, D. N. Lee and W. A. Sirignano, Periodic solu-

tions of heat transfer for flow through a periodic assem-
blage of spheres, Int. J. Heat Mass Transfer 27, 1414~
1417 (1984).

. A. Y. Tong and S. J. Chen, Heat transfer correlations

for vaporizing liquid droplet arrays in a high temperature
gas at intermediate Reynolds number, Int. J. Heat Fluid
Flow (1988), in press. Also see Fall Technical Meeting,
Eastern Section of the Combustion Institute, San Juan,
Puerto Rico, December (1986).

. G. A, Patnaik, A numerical solution of droplet vapor-

ization with convection, Ph.D. Thesis, Carnegie-Mellon
University, Pittsburgh, Pennsylvania (1986).

. J.F. Thompson, F. C. Thames and C. W. Mastin, Auto-

matic numerical generation of body-fitted curvilinear
coordinate system for field containing any number of
arbitrary two-dimensional bodies, J. Computational
Phys. 25, 299-319 (1974).

. J. F. Thompson, Z. U. A. Warsi and C. W. Mastin,

Numerical Grid Generation—Foundations and Appli-
cations. Elsevier, Amsterdam (1985).

. S. Prakash, Unsteady theory of droplet vaporization

with large gas and liquid Reynolds number, Ph.D.
Thesis, Princeton University, Princeton, New Jersey
(1978).

. V. G. Jenson, Viscous flow round a sphere at low Rey-

nolds number (<40), Proc. R. Soc. (London) 249A,
346-366 (1959).

. M. Renksizbulut and M. C. Yuen, Numerical study

of droplet evaporation in a high-temperature stream,
ASME J. Heat Transfer 105(2), 389-397 (1983).

. N. N. Sayegh and W. H. Gauvin, Numerical analysis of

variable property heat transfer to a single sphere in high
temperature surroundings, A4.I.Ch.E. JI 25, 522-534
(1979).

APPLICATION DE LA TECHNIQUE DE GENERATION DE GRILLE ELLIPTIQUE A
LA RESOLUTION DE L’'HYDRODYNAMIQUE ET DU TRANSFERT THERMIQUE
POUR DES GOUTTELETTES A DES NOMBRES DE REYNOLDS INTERMEDIAIRES

Résumé—On emploie la technique de génération d’une grille numérique 4 la résolution de I’hydrodynamique
et du transfert thermique dans un arrangement a trois gouttalettes. Des équations aux dérivées partielles
elliptiques sont utilisées pour obtenir des grilles dans le plan physique. Les équations de Navier—Stokes
dans la forme vorticité-fonction de courant et I'équation d’énergie sont résolues numériquement par la
méthode des différences finies pour des nombres de Reynolds variant entre 10 et 200. Des solutions
numeriques sont obtenues en terme de coefficient de trainée et de nombre de Nusselt. Les résultats sont
comparés a ceux obtenus dans une étude antérieure et a d’autres tirés de la bibliographie.

DIE ANWENDUNG EINER ELLIPTISCHEN NETZGENERIERUNGSTECHNIK AUF
DIE UNTERSUCHUNG VON HYDRODYNAMIK UND WARMEUBERTRAGUNG
VON TROPFENSCHWARMEN BEI MASSIGEN REYNOLDS-ZAHLEN

Zusammenfassung—Das Ziel der vorliegenden Arbeit ist es, eine numerische Netzgenerierungstechnik zur
Untersuchung von Hydrodynamik und Warmetibertragung eines Drei-Tropfen-Schwarms anzuwenden.
Elliptische partielle Differentialgleichungen werden benutzt, um die Netze in der physikalischen Ebene
zu generieren. Die Navier-Stokes-Gleichungen in der Form Wirbeltransport-Stromfunktion und die
Energiegleichungen wurden mit einem Finite-Differenzen-Verfahren fiir Reynolds-Zahlen von 10 bis 200
gelost. Numerische Losungen wurden in Form von Reibungskoeffizienten und Nusselt-Zahlen ermittelt.
Die Ergebnisse wurden mit solchen aus fritheren Untersuchungen und mit Literaturwerten verglichen.



1072

S. J. CueN and A. Y. ToNG

NPUMEHEHUWE METOJA TEHEPHPOBAHH S SJIJTMIITUYECKUX CETOK JJ1A PEHIEHU A
3AJAY THIPOOIUHAMMKH U TEIUIOITEPEHOCA B KATIEJIBHBIX ®AKEJAX ITPH
MMPOMEXYTOYHBIX 3HAYEHHAX YUCJIA PETHOIBACA

Amnoramus—ILIenbio HacCTOAIEro MCCIENOBAaHUA ABJIANOCH NPHUMEHEHHE METOAA YHCIEHHOH CeTOYHOIM
reHepalyA U1 pellieHHs 3a4aY rEAPOAMHEAMHKH H Tenaoobmena B dakese kanens TpéXx Tanos. Mcnosns-
3yI0TCA JJUIHNTHYeckne IH(bepeHHaIbHbIe YPaBHEHHS B YaCTHBIX NPOH3BOMHBIX /UIS [¢HEPHPOBAHHA
ceTok B (u3udeckoif mockocTH. YpapHenns Hasbe-Crokca, 3anucanHble B (popMe 3aBHXPEHHOCTH H
GyHKUMH TOKA, H YyPaBHEHHE SHECPTHH PellIajiCh YHCJICHHO METONOM KOHEUHBIX PA3HOCTEH 1If OHana-
30Ha yucna Pefinonbaca ot 10 no 200. YUncnenHble pelieHHs nmoay4elbl B Buae kodhduumuenta conpo-
THBNeHHs ¥ uucna Hyccenbra, Pe3ynbTaThl CpaBHHBAlIOTCA C NaHHBIMH, IOJYYEHHBIMH B paHee
OpOBEAEHHOM HCCJIEAOBAHHH H NPEICTABICHHBIMH B JIATEPATYPE.



